2023-06-19 12:08:12 来源: 碳和研究
(资料图片)
使用外国商业数据库进行中国制造产品环境(碳)足迹核算时会产生的一些问题:
技术代表性(Technological representativeness)
国外的LCA数据库的数据可能无法准确反映中国特有的技术和工艺。中国的生产方式、设备和工艺可能与欧美等地区存在较大的差异,这些差异在国外的以欧美企业为主要数据源的LCA数据库中可能无法得到充分的体现。
地理代表性(Geographical representativeness)
中国的能源结构有其独特性。例如,中国的电力供应主要依赖煤炭,而在许多欧洲国家,电力供应则主要来自核能和可再生能源。假设我们在进行例如电子产品这样的离散型组装产品的LCA评价时,这种电力结构差异会导致调用背景数据库进行替代的上游零部件对应的环境负荷,与中国的实际情况差距较大。此外,不同国家对于危废物品的排放浓度和处置标准有着不同的规范,在这样的差异下随意的使用外国商业数据库的全球平均背景数据进行替代,也可能会导致最终的核算结果和真实情况大幅偏离。
时间代表性(Temporal representativeness)
中国的工业环境和技术发展在过去十几年中发生了快速变化,但国外的LCA数据库的更新频率可能无法及时跟上这些变化。例如Ecoinvent中的光伏上下游组件的生产数据大多取自05年左右西欧工厂的实际生产数据,描述的是层压板规格为156cm*156cm的产品。当前中国光伏企业早就不再制造这种规格的产品,并且工艺和生产效率也大大提升,继续使用这样低质量的数据库支撑光伏产品的LCA评价,不但结果准确性堪忧,也会大大打击光伏企业推进绿色制造的积极性。
完整性(Completeness)
LCA数据库中任意一个单元过程可能涉及成百上千中间流和基本流的输入输出,对应原辅料、能源的消耗和主副产品的产生,以及整个生产过程和环境的交互(如自然资源消耗和环境排放等)。国外的数据提供方往往只能通过公开行业统计数据以及文献数据获得中国特定产品的生产过程数据,缺乏对于中国企业实际生产过程和实测数据的认知。这样的数据集在开发过程中往往只能“抓大放小”,即尽可能覆盖主要的输入输出流,忽略相对“细微”的消耗和排放,降低在完整性方面的数据质量要求。这样做可能有以下两个问题:第一,大量细微影响的累积之和可能超越标准限制(LCA中的取舍原则);第二,某种看似细微的输入输出可能在某种环境足迹方面的影响巨大。
实际上,上述的几个数据质量评价维度是部分交叠的,例如对于某一种产品制造过程,不同的国家(地理代表性)对应不同的制造业发展阶段(时间代表性),拥有不同的生产工艺和生产效率(技术代表性),他们组合在一起共同构建了LCA数据质量评价体系,使用者应当重点考虑各个维度重点关注的信息。